Skip to main content

Seyfried Group

Salim Seyfried headshot

Salim Seyfried, PhD

University of Potsdam
Potsdam, Germany
salim.seyfried@uni-potsdam.de

Our team works uses zebrafish to model cardiovascular diseases, including vascular malformations. We discovered that a loss of Cerebral cavernous malformation proteins causes the activation of KLF2, which is causative to endothelial defects in lowly perfused vessel beds. Together with the team of Elisabeth Tournier-Lasserve, we performed a comprehensive pharmacological screen to suppress CCM mutant phenotypes. One main focus of interest is to elucidate the impact of biomechanical signaling on the etiopathology of human vascular malformations.

VISIT THE SEYFRIED LAB SITE

Group Members

Alessio Paolini
Alessio Paolini
Claudia  Rödel
Claudia Rödel, PhD
Read Bio

Claudia Rödel started her scientific career studying the mechanisms of body axis formation in Drosophila melanogaster and graduated at the Georg-August University of Göttingen in 2011. Shortly after, she started a post-doctoral fellowship in the lab of Dr. Dimitris Beis at the BRFAA in Athens Greece, who introduced her to the fascinating world of the zebrafish. With Dimitris, Claudia started a project about the influence of blood flow on the endothelial cell behavior using pharmacological manipulations and transcriptomic analyses. She realized that the zebrafish model was an immensely powerful tool to understand vascular health and disease, because it incorporates the complexity of a complete and fully functional cardiovascular system, while being a simpler vascular tree. Furthermore, the zebrafish is extremely amenable to manipulation and live imaging techniques, which allows us to simply observe endothelial cells, especially when they misbehave!

In 2015, she joined Salim Seyfried's lab as a postdoctoral fellow to further pursue her research on endothelial cell biology and started to work on a rare neurovascular disease, cerebral cavernous malformations (CCM). What fascinates her most in this disease are the triggers that are not of genetic origin, but stem from other cues such as blood flow, flow pattern and other biophysical factors.

Cuong Van Pham
Cuong Van Pham
Read Bio

Van-Cuong Pham completed his Bachelor's in Hanoi (Vietnam), followed by Master's in Fukuoka (Japan). He has joined the Seyfried group at the University of Potsdam (Germany) since 2019 as a PhD candidate working under European Union’s Marie Curie project ‘V.A. Cure’, which aims to elucidate underlying mechanisms and find novel treatment for vascular anomalies diseases. As being always fascinated in using fish embryo to model human disease, he spends his time in the lab to generate transgenic and mutant fish that were later used to study the pathogenesis of vascular diseases, particularly cerebral cavernous malformation (CCM). His PhD project focuses on understanding chromatin remodeling in zebrafish CCM model by applying molecular biology and confocal imaging techniques.

Dinara Sharipova
Dinara Sharipova
Read Bio

Dinara Sharipova began her scientific career at Novosibirsk State University in Russia, where she earned her bachelor’s and master’s degrees in cell biology and genetics in 2019. During her studies, she investigated the mechanisms of neurodegenerative disorders, developing patient-specific iPSC-based cell models for Huntington’s and Parkinson’s diseases. While her primary interest was in biomedical research, she also developed a strong interest in developmental biology.

To pursue this interest and explore new model organisms and methods, Dinara completed an internship at the Max Planck Institute of Cell Biology and Genetics in Dresden, working in the lab of Prof. Dr. Nadine Vastenhouw. There, she studied zebrafish transcription factors, sparking her fascination with zebrafish as a model organism.

Following her master's degree, she expanded her research scope to cancer biology by interning at Fox Chase Cancer Center in Philadelphia, USA, under the supervision of Prof. Dr. Lori Rink. Her work there focused on the mechanisms of drug resistance in gastrointestinal stromal tumors.

In 2021, Dinara joined Salim Seyfried’s lab at the University of Potsdam as a PhD student to pursue a research project that combines her interests in biomedicine and developmental biology. Her current research focuses on the role of nitric oxide signaling in zebrafish outflow tract development and elucidating the causes of bicuspid aortic valve disease using zebrafish as a model organism.

Kasra Kamali
Kasra Kamali
Read Bio

Kasra Kamali began his scientific career in 2014 by studying cellular and molecular biology at the University of Mazandaran (Iran), where he published an article from his bachelor thesis titled 'Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in a rat model.'


Following this, he began his master's degree in pathological microbiology at the same university in 2018, where he was working on a thesis entitled 'The role of Broccoli diet in the qurum sensing and expression of the pathogenic genes in Pseudomnas aeroginosa and effective genes in wound healing in mice.'


In 2020, he enrolled at Friedrich Schiller University Jena (Germany), and in 2022, he joined the Leibniz Institute for Natural Product Research and Infection Biology at the Hans Knöll Institute to pursue his master's degree in the biopilot plant group under the guidance of Prof. M. Rosenbaum and Dr. S. Hengoju. He defended his master's thesis, ‘Droplet-based microfluidic for high-throughput screening of serine protease,’ in 2024.


Kasra joined Salim Seyfried’s lab at the University of Potsdam as a PhD student in 2024 to look into the molecular processes that control growth and shape change, especially in vascular diseases like cerebral cavernous malformations (CCM) and hereditary hemorrhagic telangiectasia (HHT). In addition, he is looking into how the CCM and HHT signaling pathways interact with each other, which will help him see how these vascular abnormalities are controlled at the molecular level. This exploration of the HHT pathway after CCM opens windows for studying their intricate relationship and potentially uncovering novel therapeutic targets.